Kyoto University, 工学研究科, 化学工学専攻, - 2011
Kyoto University, Graduate School, Division of Engineering, - 2011
Kyoto University, 工学研究科, 化学工学専攻, - 2008
Kyoto University, Graduate School, Division of Engineering, - 2008
Kyoto University, Faculty of Engineering, School of Industrial Chemistry, - 2006
Kyoto University, Faculty of Engineering, - 2006
一様ポテンシャル場での揺らぎから発現する運動の秩序性の発達に関する研究
塩井 章久; 山本 大吾
日本学術振興会, 科学研究費助成事業, 2022/04 -2026/03, 基盤研究(C), 同志社大学
Collective motions of catalytic particles driven by chemical reations
山本 大吾; 塩井 章久
今年度は、昨年度検討が不十分であった、様々な操作条件が粒子の集団運動に与える影響に関する実験的検討を引き続き遂行した。具体的には、まず、触媒粒子の個数濃度を変化させ、集団運動を行う最適な濃度条件を検討した。さらに、6種類の有機燃料(エタノール,アセトアルデヒド,メタノール,2-プロパノール,1-プロパノール,エチレングリコール)の濃度を変化させることで、実験条件によって、界面が丸みを帯びたクラスターを形成したり、界面が角ばったクラスターを形成したりといった、特徴的な集団運動パターンが発現することがわかった。
また、発展的な研究として、本触媒反応において限定反応物質である溶存酸素を生成する過酸化水素を混合することで、溶存酸素を持続的に供給可能なシステムを構築し、触媒粒子の集団⇔解散が周期的に起こる新規な集団運動パターンを見出した。集団運動の持続時間を自在に制御できる可能性がある点で有用な知見であるといえる。
さらに、理論的な検討として、反応拡散過程を組み込んだ触媒粒子の集団運動を再現できる数理モデルの構築に着手している。本モデルでは、初期条件として空間的に濃度揺らぎのある触媒粒子が限定反応物質である溶存酸素を消費し、それにより生じる酸素濃度勾配を駆動力として自走する一次元のシンプルなモデルであり、触媒粒子が集団化し、溶存酸素が消費され尽くすと粒子のブラウン運動によって解散していく挙動が再現できた。, Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, 2020/04 -2024/03, Grant-in-Aid for Scientific Research (B), Doshisha University
Study of self-moving chemical systems for power source of microsystems
Shioi Akihisa
Autonomously moving chemical systems that exhibit biomimetic motion potentially working as power sources in microsystems have been studied. Main systems are composed of amphiphilic molecular assembly, catalytic particles, oil/water interface, liquid droplet, and solid particle. They show chemo and light sensitive motions, and some of them exhibits periodic motion under a DC electric field. Various types of moving systems with self-excitation process have been found out. Moreover, synchronous motion generated from each elementary motion has been studied with a novel oil/water nonlinear oscillator. This may be useful to consider amplification of self-motile power. These achievement has been published in scientific journals international and domestic conferences. These chemical systems will be useful for power sources working for microsystems., Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, 2016/04 -2020/03, Grant-in-Aid for Scientific Research (B), Doshisha University
Micro/nanomotor system driven under stationary DC electrostatic field
YAMAMOTO Daigo; SHIOI Akihisa
Unlike currently a macro-motor system, a micro-motor system needs to work in a smaller space where viscous effect is much larger.
In this study, we proposed a simple micro-motor system wherein a micro-particle exhibits a cyclic motion continuously in silicon oil under DC electric field. We found that a micro-particle exhibits various types of cyclic motions depending on its shape, and that the speed is controlled by strength of electric field. We also investigated relationship between its cyclic motion and electric current to elucidate the motion mechanism., Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, 2016/04 -2019/03, Grant-in-Aid for Young Scientists (A), Doshisha University
Development and applications of self-propelled micro/nanomotors that have high controllability
Yamamoto Daigo
Most catalytic micro/nanomotors that have been developed so far use hydrogen peroxide as fuel, while some use hydrazine. These fuels are difficult to apply because they can cause skin irritation, and often form and store disruptive bubbles. In this paper, we demonstrate a novel catalytic Pt micromotor that does not produce bubbles, and is driven by the oxidation of stable, non-toxic primary alcohols and aldehydes with dissolved oxygen. This use of organic oxidation mirrors living systems, and lends this new motor essentially the same characteristics, including decreased motility in low oxygen environments and the direct isothermal conversion of chemical energy into mechanical energy. Interestingly, motile direction is reversed by replacing the reducing fuels with hydrogen peroxide. Therefore, these micromotors not only provide a novel system in nanotechnology, but also help to further reveal the underlining mechanisms of motility of living organisms., Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, 2014/04 -2016/03, Grant-in-Aid for Young Scientists (B), Doshisha University